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Abstract

In order to achieve peak luminosity of a Muon Collider (MC) in the 10*° cm™s™
range very small values of beta-function at the interaction point (IP) are necessary

( By =<1 cm) while the distance from IP to the first quadrupole can not be made shorter

than ~6m as dictated by the necessity of detector protection from backgrounds. In the result
the beta-function at the final focus quadrupoles can reach 100 km making beam dynamics
very sensitive to all kind of errors.

In the present report we consider the effects on momentum acceptance and dynamic
aperture of multipole field errors in the body of IR dipoles as well as of fringe-fields in both
dipoles and quadrupoles in the case of 1.5 TeV (c.0.m.) MC. Analysis shows these effects to
be strong but correctable with dedicated multipole correctors.

Simulations presented in the report are performed using MAD-X code. One of the
goals of this study was testing and adaptation of MAD-X code for MC simulations, and also
demonstration of the MAD-X code ability to be the “all-in-one” code for MC lattice design

and simulations.

" Work supported by Fermi Research Alliance, LLC, under contract No.DE-AC02-07CH11359 with the U.S.
Department of Energy
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1. Introduction

Muon Collider (MC) is presently considered as a possible option for the high energy
frontier machine in the post-LHC-era which can be built at FermiLab [1]. To satisfy a
number of challenging requirements on the MC lattice, a new approach to the interaction
region (IR) chromaticity correction was developed and applied in the design of
1.5 TeV (c.o.m.) MC ring [2-11]. The MC lattice has small beta-functions at interaction
point (IP) of order S, ~1 cm and is featured by large B-functions and beam sizes at
interaction regions (IR) of superconducting (SC) magnets, while the muon beams have
relatively large momentum spreads. In this report, specific beam dynamic effects in MC
lattice [2-4] designed with this approach are studied.

It is desirable that the IR dipoles have an open mid-plane (OMP) to avoid showering
of muon decay electrons in a vicinity of the superconducting coils as well as to reduce
background fluxes in the detector central tracker. Preliminary analysis of such dipoles [6, 7]
showed that in order to obtain on average good field quality in the region occupied by the
beam the relatively large values of higher order geometrical harmonics (or multipole errors)
are necessary. Due to large f-functions (maximum values 53 km and 4.4 km) the aperture of
IR magnets has to be also large (up to 16 cm), making the fringe-fields potentially
detrimental in IR quadrupoles, where beams have large and sharply varying sizes. The
relevant details of MC lattice, multipole errors (ME) in OMP dipoles, and a survey on a
potential importance of fringe fields in MCs are presented in the section 2.

In this report, we analyze the effect of fringe fields and multipole errors in IR
magnets on beam dynamics. Such analysis requires to use adequate simulation tools. The
original design and modeling of MC lattice [4-10] has been performed using MAD-8
code [12], which includes a lot of tools for both lattice design and beams dynamics
simulations. MAD-8 had been for many years at the forefront of computational physics in
the field of particle accelerators design and simulations. Many tasks during MC lattice
design have been solved with numerous applications written for the Mathematica package,
which provides a high-level interface to MAD-8. Unfortunately, a further development of
MAD-8 at CERN has been frozen in 2002. It makes practically impossible any serious

modifications and adaptations of MAD-8 for some tasks specific to new rings like a MC.
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Since MC lattices had been originally designed with MAD-8, it is naturally to use a
similar code preserving the same environments for further analysis. One of the possibilities
is to use MAD-X code [12], which is the successor of MAD-8 and which offers most of the
MAD-8 functionalities, with some additions, corrections, and extensions including usage
libraries of Polymorphic Tracking code (PTC) of E. Forest[13]. Moreover, one of the
authors had participated in programming of modern tracking module "PTC-TRACK" being
its "module-keeper" for several years. This allows us to adapt and modify this module for
MC specific tasks in a testing mode. For these reasons we have accepted MAD-X as an
appropriate candidate to be a work horse for further beam dynamics simulations in the MC.

Our usage of MAD-X is aimed at resolution of two specific tasks, which can not be
properly resolved on the stage of design and simulations of M.C. ring with MAD-8. These
tasks include correct simulations of both the systematic multipole errors in the body of
bending magnets and the fringe field effects in magnets located in IR.

PTC modules of MAD-X ensure a proper description for thick magnets utilizing an
arbitrary exactness with various symplectic integrators, while high-order multipolar errors
are simulated as high-order kicks incorporated into body of thick-magnets. Also PTC
modules allows treatments the fringe effects in quadrupoles using so-called "hard-edge"
approach. In order to extend abilities for fringe field simulations, the "PTC-TRACK"
module has been modified in order to include magnet maps generated by the external code
COSY INFINITY [14], which may generate magnet maps taking into consideration realistic
shapes of fringe field falloffs. Overview of approaches for simulations of FF and ME with
MAD-X are presented in the section 3.

One of the goals for the study presented in this report was a testing and adaptation
MAD-X code for MC simulations, and also demonstration of the ability of MAD-X code to
be “all-in-one” code for simulations MC lattice designed with MAD-8 code. Therefore, the
simulations results presented in the section 4 include also testing simulations with different
MAD-X modules. Generally, the results of simulations for the MC lattice show an
importance of multipole field errors in the body of IR dipoles as well as of fringe-fields in
both dipoles and quadrupoles. Analysis shows these effects to be strong but correctable with

dedicated multipole correctors.
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2. Muon Collider Lattice

The Table 1 presents the basic parameters of the 1.5 TeV (c.o.m.) MC lattice [2-10].
The lattice design must ensure a large dynamical aperture and momentium acceptance in

order to operate with muon beams having relatively large emittances and energy spread.

Table 1. Muon Collider Parameters.

Parameter Unit | Value
Beam energy Tev | 0.75
IP beta-function, g, cm | ~1
Geom. r.m.s. emittance nm |6
Momentum acceptance % +0.3
Bending magnetic field in arcs, B | T 8+10
Length of quadrupole magnets m ~2
Length of dipole magnets m ~6

The most of critical features of the MC lattice are contained in its interaction
region (IR). Figure 1 presents IR layout with locations of correcting magnets and functions
related to beta-functions and horizontal dispersion. The special Chromatic Correction
Section (CCS) consisting of four sextupole magnets S1, S2, S3, and S4 is inserted in IR
region. In order to generate dispersion at the S1 location the first dipole (orange rectangle at
the top of Fig. 1) is placed immediately after the final focus doublet which is cut in short
pieces to place tungsten masks between them.

The sextupole S1 is located at . ~0 and responsible for minimization of the MAD-
X vertical chromatic amplitude function W, . The pair of sextupoles S2 and S4 located at
B, =0 have the same field strength and are responsible for minimization of the MAD-X
horizontal chromatic amplitude function W,. The sextupole S3 installed between sextupoles
S2 and S4 at S, ~ 0 is intended for a control of the second order dispersion.

In order to correct high-order chromaticity, the octupole and decapole magnets
located at the same places where sexupoles of CCS have been inserted. These correctors are
simulated as MAD-X thin multipoles with coefficients k31 and k4l denoting octupole and

decapole kicks, respectively.
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Fig.1 IR optic functions and layout with correctors: chromaticity correction
sextupoles S1-S4 and multipoles MUL1-MUL3,
spherical aberration correctors CORR1 and CORR2.

The MC lattice contains three multipole correctors MUL1, MUL2, and MUL3
located at sextupoles S1, S4, and S3, respectively, while MULI is reserved and not used in

our simulations. The corrector MUL2 located at S4 with B ~0 is used for correction
horizontal chromaticity affecting the Q (5 ) dependence. The corrector MUL3 located at S3
with B, =0 is used for correction vertical chromaticity affecting the Q, ( ) dependence. If
the Q(ép)-dependencies are considered as polynomial, then the octupole kicks k31 can
correct the polynomial coefficients at even powers of §,, i.e. §,and &,, and the decapole
kicks k41 can correct the polynomial coefficients at odd powers of 6, ,1.e. 5, and &;.

Two high-order multipoles for corrections of dynamic aperture CORR1 and CORR2
are located in IR near the interaction point (IP) at small values of the horizontal dispersion.
These correctors can provide sextupole, octupole, and decapole kicks denoted in MAD-X as
k21, k31, and k41 coefficients.

The MC lattice prepared with MAD-8 code already contains high-order multipoles
used corrections linear and non-linear chromaticities. Let's call this lattice as "original" one.
After conversion the MAD-8 MC lattice into MAD-X lattice, the testing particle tracking
runs has been performed with MAD "PTC _TRACK" module. Figure 2 shows phase space
plots for 4 particles starting at four different values of y-coordinate, y =6, 12, 18, 24 um,

and two values of x=0 and 6 um. These plots demonstrate that the existence of high-
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multipoles result in a non-linear behavior of the particle trajectories and non-linear coupling

between transverse phase-spaces.
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Fig.2 Phase space trajectories on (x,x’) and (y,y’) planes

at x=0 (upper plots) and x=6 um.
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2.1. Multipole errors in bending magnets

The IR super-conducting dipoles can be made using the traditional large-aperture
cos @-design, which will require a sufficiently thick inner tungsten liner to protect the cold
mass from muon decay product. An alternative is the open-midplane (OMP) design, which
allows the decay electrons to pass between the superconducting coils. This design can
potentially mitigate problems with heat deposition in the cold mass and detector background
fluxes.

The cross-section and good field region of IR dipole coil of OMP-design allowing
the passage of the decay electrons are shown in Fig. 3. This magnet configuration provides
relatively large values of geometrical harmonics in comparison with the traditional

cos @-design for superconducting magnets.

Fig. 3 IR dipole coil cross-section and good field region [6,7].

Geometrical harmonics b, for IR dipole for R =40mm presented in Table 2. They

ref

are defined by the following standard multipole field expansion:

n-1
B,(x,») +iB,(x,y) = B, x107*> (b, + ian)[x - ‘yj . (1)
’ r;'e/"

n=1
MAD-code use a different multipole definition given by the following expansion:

(2 i Yo i)
m!

B,+iB,=Bp-y. , (2)

where m =0, 1, 2, correspond to the dipole, quadrupole and sextupole fields, respectively.
The multipole orders n and m in the above equations are related by the equation

6/29/2012 Page 8 of 29



m=n—1. At the reference field B =8 T and magnetic rigidity Bp=2500 T'm, the normal

multipole coefficients given by the above formulae are related according to the following

equation:

ke 232107 (nr,,__ll ) b, . 3)

ref

In our simulations with MAD-X code the normal multipole kicks defined as k"™ L

for the magnet with the length L are used. The values of the k21, k41, ke6l, k81, k101, k121
coefficients in dipole magnets of the length L =6 m are presented in the Table 2. Note, that
in the most of our calculation the highest-order multipole kicks k101, k121 are not used,
except the results shown in Fig. 12.

Table 2. Geometrical harmonics b, at R =40 mm in standard notation and

ref

corresponding normal multipole coefficients knl in MAD-code notations.

harmonic # | Value | normal "knl"-kicks | Value

b, -5.875 | k21 -1.41'107

b -18.320 | k4l -3.30'10"7

b, -17.105 | k6l -5.77107°

b, -4.609 | k8l -5.4410""°
b, 0.390 | k101 +2.5910""
by, 0.103 | k12l +5.6510""°

2.2. Fringe fields importance for MC

Extensive discussion with a comprehensive list of reference about effects of the
fringe fields in accelerator magnets can be found in paper [15]. General tendency is to
believe that for the most of rings the fringe field contributions from opposite ends of a
magnet cancel each other. This is why the fringe fields of quadrupolar and sextupolar
magnets are neglected in the most of tracking codes, e.g. in MAD-8. According to the
conclusion of paper [15], the fringe fields effects may be important in some special rings,
e.g. in small rings with large emittances and short magnets as the SNS accumulator ring and
the muon collider ring. Additional careful considerations should be taken for IR with large
variation of the beta-functions. For example, the use of short high-gradient wide-aperture

quadrupoles having a short focal length enhance the relevance of their fringe field
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effects [16].

Thus, the fringe fields can be important for the MC ring as well due to already
mentioned very large p-function values, large magnet aperture and short length of
quadrupole pieces (<2 m). Figure 4 shows vertical and horizontal sizes of the muon beam
corresponding to the MC parameters from Table 1. It is empirically adopted that the inner
radii of the closest to IP magnets should be larger than about 50, plus 1 cm. This
conditions determines the relatively large aperture radius of the first IR quadrupoles to be

equal a,, =40 mm, a,,=55 mm, and a,, =80 mm.

~a(cm) Q3 Q4 Q5 Bl Q6

s 10 1 2 s(m)
Fig.4 Beam sizes and aperture of the magnets located at IP [6,7].

Starting from 1960th many authors have derived approaches and formulae for
treatments of the fringe field effects, e.g. K. Steffen[17], G.E. Lee-Whiting [18],
H. Matsuda and H. Wollnik [19], P. Krejcik [20], E. Forest and J. Milutinovic [21] while the
most of studies are devoted to the fringe fields in quadrupoles. In the last paper [21], the
original Lee-Whiting formulations for the quadrupole fringe effects in the hard-edge limit
has been generalized to an explicit symplectic formula including the effects on the time of
flight due to ¢ -dependence. Later these formulae have been implemented in PTC-code [13]
and can be called in MAD-X code [12] using PTC-libraries.

The Lee-Whiting formulae take the fringe field effect as a integrated kick neglecting
details of field falloffs in the end region. A simple criterion for validity of treating the end

B,

and g, are the optical beta-functions and its derivations. With the assumption that the

as short is based on the equality

region of the length /;

ringe

Liinge << B, [16], where B,

length /., 1s equal to about one aperture diameter, this criterion for IR quadrupoles of

fringe
considered here M.C. ring is satisfied quite well.

The realistic fringe field falloffs can be simulated in the code COSY INFINITY [14]
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using differential algebraic methods. In the paper [22], this code has been used for various
studies on fringe field effects. Also some contradictions in the sharp cutoff (or hard-edge)
approach are critically discussed, while careful considerations of fringe field effects with
account of magnet aperture and falloff shape are recommended. Simulations for an example
ring have demonstrated that fringe fields influence on all orders of particle motion,
beginning with the linear motion. The fringe fields may affect linear tunes, amplitude
dependent tune shifts, chromaticities, and dynamic aperture. The conclusion was that the
hard-edge approximation is insufficient and realistic FF falloffs described via the Enge
functions should be taken into account.

For these reasons, we have decided to utilize both MAD-X with PTC and COSY
INFINITY codes for the fringe field treatments. It might be interesting to compare results

Bl

fringe

with both approach, since the condition for the hard-edge limit

<< pB,, is well

satisfied for considered M.C. ring.

3. Approaches for simulations of FF and ME with MAD-X.

3.1. Overview of relevant MAD-X modules.

Let us consider the MAD-X capabilities for simulation of M.C. lattice taking into
account the multipoles errors (ME) and fringe fields (FF). MAD-X consists of two type of
modules: a) traditional modules which have the most of MAD-8 functionality; b) PTC
modules which provide an interface to PTC library.

Several traditional modules are considered to be relevant for our studies: the Twiss
module, THINTRACK module, and SODD module. Twiss module allows calculations of
basic optical functions, including Montague chromatic functions, and tunes, chromaticity
etc. The module THINTRACK performs particle tracking in the "KICK-DRIFT" lattice
converted from original ring lattice with the command MAKETHIN. The SODD module is
based on analytical formulae for second order detuning and distortion. These traditional
modules allows some artificial treatment of multipole errors in magnets body via splitting a
thick magnet into several pieces and inserting multipole kicks between these pieces.

Figure 5 shows a simple case of splitting scheme, when one thick magnet is split into pieces.
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However, traditional modules ignore any fringe fields of multipole magnets like
quadrupole, sextupole, etc. Only linear terms for edge focusing in bending magnets can be
simulated. Let us remind that fringe fields of multipolar magnets can not be simulated by
thin multipole kicks as multipolar errors in the magnet body. For example, the fringe fields

of quadrupole can be regarded as a pseudo-octupole, which can not be replaced by an

octupole.

' -._N,_‘ 2, m._N_‘
SBEND, L=s A=K
\ 1 ﬁ -
| - = D..
S Q =
; = = | k1 | =
I w =d i
I M £ 5]
wlz]]¥
' :
I =
=

Fig. 5. Splitting scheme for simulations of multipole errors.

Three relevant PTC modules of MAD-X are PTC TWISS, PTC TRACK, and
PTC_NORMAL. The module PTC_TWISS performs calculations of Ripken optics parame-
ters, but Montague chromatic functions are absent. The module PTC-TRACK performs
symplectic tracking in an original thick-magnet lattice and does not require a conversion of
the original lattice as THICKTRACK module does. The module PTC_NORMAL uses the
PTC normal forms for analysis for calculations non-linear machine parameters: tunes and
tune derivatives, dispersion and anharmonicities.

All PTC modules allow natural treatments of high-order multipoles in magnets body
via usage of additional options in description of basic magnets. A full range of normal and
skew multipole components can be specified in the magnet description as integrated
multipole kicks which then are automatically spread over whole thick magnet by PTC
according to an applied symplectic integrator. In our simulations multipole errors can be
represented as high-order multipoles in bodies of bending magnets. They are described in

MAD input script as in the following example:

BEl: RBEND, 1=0.2, ANGLE=0.1, knl:={0,0,-0.014,0, -330}
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In the above example among traditional parameters, the parameter knl containing
non-zero sextupole and decapole field errors is added.

PTC library can treat the fringe effects in quadrupoles in "hard-edge" approach based
on Lee-Whiting formulations [13], if the FRINGE option in PTC library is switched on. In
official MAD-X release there is no input commands controlling the FRINGE option, while
its default value is off. We have introduced the dedicated switcher in MAD-X input

commands to control the state of the FRINGE option in relevant PTC modules.

3.2. Exporting magnet maps from COSY INFINITY

In order to extend our abilities for more detailed and careful fringe field simulations
within MAD-X code, the "PTC-TRACK" module has been modified in order to import
magnet maps generated for realistic FF falloffs by the external code COSY INFINITY. The
importing of several specific types of magnets has been implemented in our simulations,
including rectangular dipoles, quadrupoles and sextupoles. The command "FR<mode>" of
COSY INFINITY has been used during map generation. The usage of the most precise
fringe field mode "FR 3" has been utilized. In this mode the fringe field falloff in a magnet
with a full aperture D is based on the standard description of the longitudinal dependence
of multiple strength by the Enge function F=1/[1+exp(P)] using the fifth order
polynomial P(s) depending on normalized longitudinal coordinate s=z/D . The polynomial
coefficients for a default and simple models given in COSY INFINITY manual have been
used in our simulations.

COSY INFINITY allows to calculate maps for total magnet with command "FR 3"
and for magnet parts. Maps for magnet body, entrance FF, and exit FF are generated with
commands "FR 0", "FR -1", and "FR -2", respectively. The total map can be decomposed as
product of entrance, body and exit maps, 1.e. My, =M oMo M ,. In order to test
different possibilities, an import of all four maps has been implemented.

The linear parts of maps generated by COSY INFINITY and MAD-X are different,
because the COSY INFINITY generates maps for realistic magnets with finite aperture and
finite fringe field falloffs, while MAD codes uses maps for ideal magnets assuming ideal

hard-edge field distribution, while neglecting magnet aperture. The linear part of COSY
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INFINITY map depends on the shape of fringe fields and magnet diameter, while there are
no such dependencies for MAD codes. Due to this fact a simple replacement of MAD
element by COSY INFINITY map may results in essential perturbations of linear optics
including values of linear tunes.

Moreover it can be stated that MAD code has no elements which can universally
substitute even linear part of map generated by COSY INFINITY. The explanation of this
fact can be found in Ref. [17, 23], where ideal quadrupoles with hard edge field distribution
and real quadrupoles with a bell-shaped field distribution are compared. Let's remind, that
the linear transformation matrix for ideal quadrupole is characterized by two parameters, the

quadrupole length /, and field strength k,. The transformation matrix of real quadrupole

also can be presented as an "effective" hard edge model. However, the "effective" values of

the length /5" and the strength k" are different for the focusing and defocusing plane. Thus,

the linear "effective" hard edge model of real quadrupole is characterized by four

parameters Lo , kop , and Ig5, kgp -

Our numerical experiments have showed that a direct substitution of COSY maps for
quadrupoles results in essential distortion of linear lattice parameters which resulting in
drastic effect on high-order beam dynamics, e.g. the dynamic aperture is reduced by many
times. Therefore, in order to keep low-order lattice parameters, while investigating high-
order effects from realistic fringe fields, we have implemented a possibility to replace the
linear parts of imported maps by matrices calculated with hard-edge model. In this case, the
stand along fringe fields maps have the unit matrices in linear parts and are denoted as
MW and MU, and the total and body magnet maps have hard-edge model matrices in the
linear parts and are denoted as M) and arlteee] respectively. However, simple hard-
edge model matrices ignore many kinematic effects. In order to keep them, a possibility to
combine the imported maps with accurate PTC maps for hard-edge with switched off hard-
edge fringe fields M5 o 18 also implemented.

After numerical experiments for our MC collider lattice, we have concluded the most
preferable combination for the imported map is MU oM oMl 1t allows to
preserve a linear lattice parameters with accounting of kinematic effects by PTC maps,

while investigating possible manifestation of new effects from realistic fringe fields, which

can be sorted out by a comparison of simulation results with reference results obtained with
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PTC

PTC "hard-edge" fringe fields approach, i.e. with the map M, .e_on - INOte, that the maps

import has been implemented only in a development version of MAD-X "PTC-TRACK"

module for only element-by-element tracking, and can not be used in other PTC modules.
4. Simulation results

4.1. Dynamic aperture with fringe fields

The effects of fringe fields have been estimated via calculations of dynamic
aperture (DA) for the original MC lattice without multipole errors in bodies of the bending
magnets. Figure 6 shows simulation results for three different options of the fringe fields
simulations in comparison with the lattice without fringe fields. The first option is Lee-
Whiting's "hard-edge" fringe field formulation calculated by MAD-X PTC with option
FRINGE, which allegedly switched on fringe fields only in quadrupoles. The second option
is usage of imported maps only in IR quadrupoles, while the third option use imported maps
both in IR quadrupoles and dipoles. The discussed above map scheme
MU omPTC oMU isused for both last options.

Figure 6,a shows boundary curves of the stable area on the (x - y)-plane of initial
coordinates for particles surviving after 1000 turns. Particles start at IP with zero initial

slopes x'= y'=0 and momentum deviations &, = Ap/p=0. The fringe field effects results in
essential reduction the stability domain, i.e. the value of stable area S, is reduced by about
45%. Figure 6,b shows dependence of S, on the relative momentum &, .

The curves for all three fringe field options are very close to each other. Similarity of
curves for the fist and second options confirms our expectations that fringe field regions in
our MC lattice can be considered as short and can be treated correctly using the "hard-edge"
approach with MAD-X PTC. This similarity indirectly confirms the correctness of our
implementation of imported maps. It is also clear that effect of fringe fields in dipoles on
dynamical aperture is negligible. Please note that the difference between the results obtained
with PTC hard-edge approximation (rose curve) and COSY maps with FF in both
quadrupoles and dipoles is quite small and can be explained by tacit inclusion of dipole FF
in PTC, not announced in the documentation.

Although effect of fringe fields in quadrupoles is significant, it is not disastrous,
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because pseudo-octupole field formed by the fringe fields of quadrupoles can be

compensated similar to fields of usual octupole errors.
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Fig.6 Dynamic aperture for different fringe field models: w/o fringe fields off (red);
with PTC fringe fields in quadrupoles (rose); with imported quadrupole maps (green); with
imported quadrupole and dipole maps (blue).

4.2. Chromaticity with multipole errors and its correction

The nonlinear chromaticity dependence Q(ép) can be calculated with a traditional

MAD-X module TWISS. In this case the multipole errors in the bodies of dipole magnets
are simulated using a considered above splitting scheme and fringe fields in quadrupoles are
ignored. The lattice preparation using the splitting of the rectangular dipole magnets B1 has

been performed in several steps, while controlling and comparing the Q(& ) )-dependencies at

every step. The steps are the following ones: a) Bl dipoles are originally simulated as
MAD-X RBEND; b) RBENDS are replaced by equivalent SBENDS with the entrance and
exit pole faces both equal to the half bend angle; c) SBENDS are sliced into five segments;
d) five sextupolar kicks k21 simulating multipole errors are inserted in slices. Figure 7

shows Q(5p)-dependencies for these steps. Since the plots for steps a, b, ¢ coincide and

overlap each other, Figure 7,a show the plot for the step a only.
The sextupole errors in the body of dipole magnets produce large variations in

nonlinear Q(ép) -dependencies (see Fig. 7,b), which should be corrected in order to
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minimize tune deviations from nominal values within momentum range of 0.3 %.
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Fig 7 Q(ép )-dependencies calculated with TWISS module.

The TWISS module of MAD-X also allows calculation of Montague chromatic

functions in MAD-X formulation. Therefore, all technique used for the linear chromaticity

correction with help of chromatic functions in MAD-8§ is also available in MAD-X. Figure 8

shows Montague chromatic functions for the MC lattice for steps @ and d. Again since the

plots for steps a, b, ¢ overlap each other, only the plot for the step a is shown.
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Fig. 8 Montague chromatic functions for the MC lattice

Corrections of the linear chromaticity in the lattice with multipole errors have been

performed with matching procedures which use the chromatic functions calculated with

TWISS module. Two cases of constraints minimizing the vertical chromatic function W,

have been tested. In the first case, the local constraint setting the zero value of W, at the

specific longitudinal coordinate (the end of sub-line "qring") is applied. In the second case,

the constraint is the global zero value of vertical chromaticity along the whole lattice. Both

cases of constraints results in the same W, -curves.

Figure 9,a shows the dependence of the vertical chromatic function W, on the

6/29/2012

Page 17 of 29



longitudinal coordinates for original lattice without multipoe errors (red), for the local

constraint (blue), and for the global constraint (green). All three W, -curves coincide quite
well. Figure 9,b shows the Q(§p )-dependencies after linear chromaticity corrections. The

resulting deviations of tunes after these corrections are even less than in the original lattice.
Thus, the corrections of the linear chromaticities with MAD-X can be performed in a

manner similar to MAD-8 code.
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Fig. 9. The correction of linear chromaticity with MAD-X.

The high-order chromaticties can be corrected by variation of octupole and decapole
components in multipoles MUL2 and MULZ3. The purpose of the correction is minimization

of the Q(5p) deviations from nominal value within a given range of momentum
deviation &, . During the step-by-step minimization procedure it is convenient to present the
Q(§p )-curves as polynomial. As discussed above, the octupole components k31 affect the
polynomial coefficients at 513 and &, and the decapole components k4l affect coefficients at
5>and 5. It was helpful to use the plotting software which provides polynomial fitting

coefficients. This allows us to see effects from a particular correcting multipole on a

particular polynomial coefficient.

Figure 10 shows the final Q(5p)-dependencies for fractional values of Q,  after

corrections of high-order chromaticities in the lattice with multipole errors (see Table 2).
The values of polynomial coefficients and correcting multipoles are also shown in the plot.

On the next step, the Q(§ , )-dependencies have been tested with PTC_TWISS module.

These tests are important, because PTC_TWISS allows us to add simulations of the fringe
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field effects in quadrupoles. Figure 11 shows the Q(5p)-dependencies calculated with

PTC_TWISS module for the lattice with all multipole errors included, while Figure 11,a

show the curves for the same lattice as used for TWISS module.
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Fig. 10 The corrected Q(5 , )-dependencies in the lattice with all multipole errors.
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Fig. 11. The Q(ép )-dependencies calculated with PTC_TWISS
for the lattice with all multipole errors .

The resulting Q(5p)-curves calculated with TWISS (Fig.10) and PTC TWISS

(Fig.11,a) look are slightly different. PTC_TWISS curves have additional linear slopes.
These slopes of PTC_TWISS curves have been corrected with small variations of sextupole

correctors S1,S2, S4. The final corrected PTC_TWISS Q(ép) -curves are shown in
Figure 11,b. Thus, there is a small difference in the calculated Q(§p )-curves by TWISS and

PTC_TWISS modules. This difference can be easily corrected with sextupole correctors.
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4.3. Dynamic Aperture with multipole errors

The dynamical aperture has been calculated using particle tracking with
PTC _TRACK module in the presence of multipole errors in the bodies of the bending
magnets B1. Figure 12 shows effects of multipolar errors in IR dipoles B1 on value of the

the stable area S, . The individual (red) and cumulative (blue) effects of multipole errors

k21, k41, k61, k81, k101, and k121 and are presented. By the cumulative effect of e.g. decapole
error (k4l) we understand the joint effect of the sextupole and decapole errors with higher
multipoles excluded.

Remind again, that results using the highest-order MEs k101, k121 are presented only
for Fig. 12. In all other plots, kicks k101, k121 are not used due to their negligible effects.

The stable area is most seriously affected by sextupole and decapole errors. The
higher multipoles partially compensate their effect but not enough to restore the DA at its
original value. Therefore additional correctors are necessary for spherical aberration
correction. Two such correctors - CORR1 and CORR2 shown in Fig. 1 — were added to
provide sextupole, octupole, and decapole kicks referred to in the following by the MADX
coefficient name (k21, k31, or k4l respectively). Correction of the effect of sextupole and

decapole errors on DA was studied separately.

3x10°

91 2 B Sxy (individual)
25x10° | Sxy [m~] B Sxy (cumulative)

2x107 |

15x10° |

1x10° |

0 r

off k2nl  k4nl  kénl  k8nl k10l k12l

Fig. 12 The stable area S, at different multipole errors.
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4.3.1. Sextupolar errors and possible corrections of DA

Let us use only sextupolar errors in the bodies of dipole magnets B1. Generally, the
correction of the errors in order to increase DA can be performed by minimization of so-
called detuning coefficients, because an increase in detuning coefficients leads to DA
reduction. Detuning coefficients (“tune shifts vs. amplitude”) are helpful for DA
optimization. MAD-X offers direct calculations of detuning coefficients with
PTC_NORMAL module based on the normal forms. At the first step, we tested detuning
coefficients calculated with PTC_NORMAL for our strongly non-linear MC lattice.

The detuning coefficients have been compared with detuning coefficient calculated
via particle tracking with PTC_TRACK. In this case, the detuning coefficients, which are
derivatives of particle amplitudes, were calculated as finite differences on the mesh defined
in the (x — y)-plane with a given step /. The tune values at the mesh nodes were calculated
using the turn-by-turn (TBT) analysis of the tracking data. The TBT analysis with efficient
algorithms [24] was performed using Mathematica package.

The calculation of detuning coefficients with TBT analysis required to perform a lot
of tests in order to choose optimal values for the number of particle turns and the mesh
step h. The optimal turn number and the mesh step are found to be equal to 128 and 3 um,
respectively. The detailed table with optimization data is presented in the Appendix.

By comparison of the detuning coefficients calculated for our MC lattice with
PTC NORMAL and PTC_TRACK we concluded that only the first order detuning
coefficients are consistent. The discrepancies in the second order detuning coefficient do not
allows us to consider their values as reliable and their usage in correction procedures should
be avoided.

The example for the usage of the first order detuning coefficients for correction of the
sextupole errors in the magnet body is presented in Figure 13. The first order detuning

coefficiens 00, /0¢, and 0Q,/0¢, demonstrate a parabolic dependence on the sextupole

strength of the corrector CORR1. The optimal value of the sextupole strength minimizing
both detuning coefficient is near the cross of two parabolic curves and equals to k21=-0.011.
The TBT analysis of PTC_TRACK data can be also used for finding an optimal

strength of the sextupole corrector. Figure 14 shows such an example for corrector CORRI1.
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The particle tracking over 128 turns has been used. The plots for two mesh steps of
3 um (left columns) and 2 pm (right column) are presented. The results for two finite
difference schemes are shown, the upper plots for an interpolation using 6 node mesh, and
the lower plots for interpolation scheme using 10 points. The central column contains
magnified images of the left column pictures. The both 6 and 10 node mesh schemes at step

of 2 um provide noiseless curves for 60, /0¢, and 0Q, /0¢, curves, but only 6 node mesh

scheme provides satisfactory plots for the step value of 2 um. The optimal values of the

sextupole strength are practically the same as with usage of the PTC_NORMAL module.
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However, the curves obtained with TBT analysis of PTC_TRACK data are very noisy for
the sextupole strength far from the optimal value. This circumstance makes it difficult to use
this algorithm for automatic determination of the sextupole correctors optimal strength.
Figure 15 shows the boundary curves on the (x — y)-plane for the three cases: a) the
original MC lattice (on the left) without multipole errors; b) the MC lattice with sextupole
errors in dipoles B1; c¢) the MC lattice with sextupole errors in dipoles B1 and sextupole

corrector CORR1 with optimal strength of k21==-0.017. The values of the areas S are also
shown on the plot. Using the S -values one can conclude that due to sextupoar error the the

stable area is reduced by about 55%, and the sextupole corrector CORR1 can partly increase

the S -value area, while the final S, -value is equal to about 70 % of the original lattice.
Note, that the S, -value for the central plot is not consistent with values of the Fig. 12, since

the calculations have been performed with slightly different lattice parameters.
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Figl5. Effect of the sextupole errors and sextupole corrector CORRI1.

Thus, the usage of PTC_NORMAL is limited to only the first order detuning
coefficients, while TBT analysis of PTC_TRACK data requires a lot of preliminary testing.
Due to these limitations, one can prefer the straightforward correction procedure based on
scanning DA throughout values of the corrector strength. Although such procedure is very
time consuming, it may became an universal and power tool, if it will be fully automatic.

Figure 16 shows results of the DA scanning for sextupole correctors CORR1 and
CORR2. Although the corrector CORR2 is located at non-zero value of horizontal dipersion

and may affect the chromaticity, it provides almost full compensation of the S, -value

reduction caused by the sextupole errors.
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Fig. 16. Scanning of S -values for sextupole correctors CORRI (left) and CORR2 (right).

It is important to have a large dynamic aperture in whole range of the momentum
acceptance. For this purposes, DA correction for on-momentum particles should be
accompanied by the corrections of non-linear chromaticity within required momentum

acceptance. Figure 17 shows the S -values vs the constant momentum deviations for three

cases: 1) the original MC lattice without multipole errors (red); 2) the MC lattice with
sextupole errors in dipole B1 (rose) and corrected with nonlinear chromaticity; 3) the last

lattice with switched on sextupole corrector CORR2 (green).
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Fig 17. Correction of sextupolar errors within momentum acceptance.

A comparison of the first and second curves demonstrates a possibility of flattening

the Sxy(§p)-curve in a wide range of momentum deviation. The third curve shows that

combination of the sextupole corrector with chromaticity correctors provides a quite flat

S, (§p) -dependence within the momentum acceptance. The boundary curves for on-
momentum particles for the cases presented in Fig.17 are shown in Fig.18.
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4.3.2. DA with decapole errors

The early presented Fig. 12 suggests that the decapole errors have the most severe
effect of DA. The stable area under action of decapole errors in bodies of dipoles B1 for on-

momentum particles is also shown in the above Fig. 18 (blue). Figure 19 shows the S, (5p)-
dependences and the Q(5 , )-curves for the lattice affected by decapole errors.

It is seen that DA sharply drops for off-momentum particles. A comparison of the left
and right plots of Fig.19 shows that the correction of vertical nonlinear chromaticity does

not help. Attempts of scanning S, -values for on-momentum particles w.r.t. the decapole

coefficient in CORR1 and CORR2 does not show any improvement with the strength of
decapole correctors. Addition of higher multipole errors given by the kicks k101 and k121
does not show any effect either. The exact mechanism of the off-momentum DA reduction
due to the decapole errors is not determined yet. The observed strong effect of the decapole
error is an argument against the open-midplane design making it less attractive. If the open-
midplane design will be eventually chosen (for IR dipoles), some space should be reserved

for decapole correctors between them.
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Fig. 19 Decapole effect on off-momentum DA

5. Conclusion

Muon collider (MC) lattice requires simulations with adequate treatments of
systematic multipolar errors and fringe fields in quadrupoles. MAD-X code with relevant
extensions and modifications can be an appropriate candidate for “all-in-one” code for MC
simulations. Combination MAD-X with COSY as a map provider may cover the most of
types of quadrupole fringe fields formulations.

Analysis shows that the fringe field errors in quadrupoles can significantly reduce the
DA and require correction which we have not attempted yet. The sextupole errors in the
body of dipole magnets also reduce DA. This DA reduction can be effectively compensated
with a dedicated correctors already included in the design.

The decapole errors in IR dipoles are found to produce the most detrimental effect on
dynamic aperture especially for off-momentum particles. If the OMP design will be chosen
for IR dipoles, it will be necessary to put additional correctors between them for local
correction of decapole errors.

MAD-X modules TWISS, PTC_TWISS and PTC_NORMAL can be used as guiding
tools at a design stage, while tracking with PTC_TRACK can provide more reliable results.
Some automatization of the DA calculations and TBT analysis of PTC_TRACK data is
desirable. It can be done by inclusion into source code both algorithms used in MAD-X

input-scripts and external codes like SUSSIX code [25].
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